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Land surface parameter processing
DA/OPTUE preprocessing
Downscaling support
Forcing adjustments (bias correction)
Restart/ensemble generation

Model evaluation and benchmarking
Hydrological products (drought
indices, flood indicators)

Meteorological data
(NLDAS, MERRA,
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Need formal evaluation

ABSTRACT

Hydrologic research at the interface between the atmosphere and land surface is undergoing a dramatic change in

focus, driven by new societal priorities, emerging technologies, and better understanding of the earth system. In this
anrface hvdraloov recearch ic nronnced in order to onen the debate for more comnrehencive

van den Hurk et al., BAMS (2011)

Need a general benchmarking framework

ACCELERATION OF LAND capable of capturing useful modes of variability
SURFACE MODEL DEVELOPMENT of LSMs through a range of performance metrics
OVER A DECADE OF GLASS IS necessary for further advancing the

performance and predictability of models

BY BART vaN DEN HURk, MARTIN BesT, PauL DIRMEYER, ANDY PITMAN, JAN POLCHER, AND JOE SANTANELLO

The Global Land Atmosphere System Study has ushered in an era in which LSMs for
numerical weather and climate prediction now incorporate complex vegetation responses,
detailed hydrology, dynamic snowpack evolution, urban processes, and more.

& Quantitative measures of fidelity of model simulations are essential for improving the
usage and acceptability of model forecasts for real-world applications

& Characterization of accuracy and uncertainty in model predictions - to be used as a
benchmark for future model enhancements



Model-Data-Fusion (MDF)

Williams et al., Biogeosciences (2009)

Model application
i M

(within domain of validity)

DF - the paradigm for combining
information from models and data

Model (re)formulation
/ (definition of model structure)

AN

— N\ i Use the information from data to help to
_ Model validation L DT ModNel characterisajjon ‘ : ' ; :
Fepnetindependent 2 BN NGRS W formulation, characterization and evaluation
ata = | of models in a structured manner
eneréli_sation I Moflel sta_te!p_aram ter
(“““"@ i aten ¢ MDF and Benchmarking are two of the core
AN / themes of the GEWEX GLASS community
© State/parameter
assessment
lausibility assessment and . .
¥ evaluation of tcertainty) & A comprehensive evaluation and

. . . benchmarking framework is essential for
Fig. 1. The multi-stage process for model-data fusion: a conceptual ,
diagram showing the main steps (and the iterative nature of these enab INg the MDF conce pt

steps) 1involved 1n a comprehensive data-model fusion.




Definitions ver-i-fi-ca-tion

!/ verafa' kaSH(a)n/

nour

the process of establishing the truth, accuracy, or validity of something.
“the verification of official documents”

LVT functions both as a verification and T T e pon s

they

benchmarking environment bench-mark

/"ben(t)SHmark/

The Plumbing of Land Surface Models: Benchmarking Model Performance verb
gerund or present participle: benchmarking
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evaluate or check (something) by comparison with a standard.
"we are benchmarking our performance against external criteria”
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(Manuscript received 27 August 2014, in final form 19 December 2014) I 1 I | i ’

ABSTRACT

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evalu-
ation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison.
Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different
approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are

erformed. This can lead to very different conclusions about L.SM performance. For this study, both simple
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¢ Evaluation - model outputs are compared to observations to ;_ o)
derive an error measure o ] v
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¢ Comparison - model is not just compared to observations, " Metric

but also to other models

¢ Benchmarking - performance expectation defined a priori source: Best et al. (2015)




Comparisons (MIPs ..)

ALMIP

THE INTERNATIONAL LAND MODEL BENCHMARKING PROJECT
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entifies metrics for which one model pertorms better than another, or
nere errors In multiple models are systematic

nere performance improvements are possible/not possible

relative to o
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& Too much reliance on model comparisons - models may end up being
developed too similar to each other
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Benchmarking

¢ Simply comparing models and observations — canonical “evaluation” — can'’t tell us whether any of the
models are doing a good job

¢ Benchmarking involves defining expectations of performance in any metric of interest a priori — before
running model. Options include:

& previous model version (weak — both models could be poor)
& fit for a particular application (stronger / useful — can tell us if a model is “good enough”)
i effectively utilizes available information (strong — can give us an objective definition of whether a model

is “good”) - defines a priori expectations based on the complexity of the model and the amount of
information given to it.

Smoothed Qle: 14-day running mean. Obs - AmpleroFluxnet.1.4 Model - Amplero_J3.1

S _ —— Observed Min = (-55.3, -72) Score_smooth: 0.746
- —— Modelled Max = (372, 418) Score_all: 0.502
SO = (675,56) (NME) . .

s - | | | & We would typically accept this as a good
s 5 | simulation (good correlation visually)
P 'j ¢ Benchmarking will reveal that this is in
: ¥ ) ﬂ fact a poor simulation
%) o '4 “ M

T T T T T T T
1Jan03 1Jun03 1Jan04 1Jun04 1Jan05 1Jun05 1Jan06 1Jun06

source: Gab Abramowitz




Benchmarking example

¢ How well should we expect a LSM to predict latent heat (Qle) flux at Amplero site”

1. Take several (19) tlux tower sites other than Amplero
2. Train a linear regression between downward shortwave radiation and Qle

3. Use these regression parameters to predict Qle at Amplero using site
meteorology

Smoothed Qle: 14-day running mean. Obs - AmpleroFluxnet.1.4 Model - Amplero_dJ3.1

& This will tell us: R g et e @72, 41020 57.275 e osos othoam ot
sEman e s ara 506,549 owe
& The extent to which Qle is predictable §
from SWdown alone. P
¢ How predictable Qle is at Amplero site - I
s It unusually difficult” ’
i

Even the 1_Variab‘e regreSSiOn beats the mOdel! 1Jalr103 1Julr103 1Jaln04 1Juln04 1Jaln05 1Jull'105 1Jaln06 1Juln06

source: Gab Abramowitz




LV 1 - original structure

& LIS was/is being used in many different
configurations (557, NCEP, NOHRSC, CRREL,
NRL, NLDAS, GLDAS, FLDAS, MSFC, NU-WRF,
ICBA, ...)

& LIS outputs being produced in many different
formats (grib, NetCDF, binary), different
resolutions, map projections, modes (tile, grid,
ensembles)

& The typical next step is to compare the model
outputs to reference datasets for evaluation

& LVT was originally designed to bridge this gap
- by having a framework that allows the
comparison of LIS output against other
datasets

A range of evaluation metrics
Land model diagnostics
Data assimilation and
uncertainty diagnostics
Spatial scale analysis
Support for non-LIS data
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¢ Includes support for a range of in-situ, remote sensing and model/

renalysis products

¢ Supports the analysis of outputs from various LIS subsystems (LIS-DA,

LIS-OPT/UE)

¢ Includes the capability to generate end-user oriented hydrological

products (drought/flood percentiles, indicators)

¢ Very LIS-reliant, non-LIS datasets require pre-processing to make them

“LIS-like”



LV 1 - current structure

¢ Redesigned to handle any
two land relevant datasets
(need not be a LIS output)
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¢ In addition to all other existing
capabillities, some Initial
A range of evaluation metrics bench mardng Capabilities
Land model diagnostics
Data assimilation and have beer deve\Oped

uncertainty diagnostics
Spatial scale analysis
Support for non-LIS data

¢ The supported datasets in
L4 ' « LVT can be used to develop
L™ benchmarks using simple
(regression) to more complex
(ANN-ish) methods

FINNISH METEOROLOGICAL
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r
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General capabilities

v Reconciles the differences in spatial and temporal resolutions
between the two datastreams being compared, by bringing them to a
common (user specified space and time domain)

Datastream 1

» 5 9 - - A Y - - 4 iy SRR N | Sy
S It rOr L N O LS Y Yo R e, Sl Vit | Ay

Analysis domain, resolution
(user specified)




General capabilities

Y Emphasis on supporting datasets natively, as much as possible - Users can download the data by themselves and employ them in
LVT

wE.g. ARM-CART (NetCDF), AGRMET (Grib), SCAN in-situ (ASCII) ...

v A reader/processor needs to be built for each dataset

< Many options for masking/stratification of metrics =~ A
. e 5 e
. s s _.:«-..—.-../'p e
< Data count based mask . e
« External static mask = - 5 . {j‘__,
« External time varying mask
« Variable-based stratification (e.g. day-night stratification using SWdown) g
gl
« External data based stratification (e.g. landcover, soils, elevation) S
=3
xa 5 ’
J g...—|—.:‘$:¢:§=:-i:: T
. RMSE for Evergreen Needleleaf Forest S5 4 8 12 16 20 24
- time (hour)
ﬁ N 4: RMSE for Evergreen Broadleaf Forest

s » RMSE for Deciduous Needleleaf Forest

\ RMSE for Deciduous Broadleaf Forest

[ 0 Waner 6 Closod Shrablands 12 Croplasds

B ! Evergroen Neodloleal Forost B 7 Open Shrublands I ! Urban and Buils-Up

I 2 Evergreen Broadicaf Forest B 8 Woody Savannas I 14 Croplasd Natural Veg. Mosaic
I 3 Decaduous Needleleal Forest B 9 Savannas [ 15 Snow and ke

[ 4 Decaduous Broadieaf Forest B 10 Grasdands [ 16 Basren or Sparsely Vegetated
I 5 Mixed Forests B || Permancat Wetlands 7 Teadra



General capabilities

v Analysis outputs provided in both gridded (NetCDF/binary) and ASCII formats

v Time-lagged computations

d=1 d=2 d

Datastream 1 . . . .

N

v Supports water-year (flexible year specification)

Datastream 2

veUser specifies the starting month of the year specitication
v Smoothing support (limited)
veUses a moving window average for the computation of analysis metrics

e Computes confidence intervals (currently Cls in the spatial domain is supported; It will be
extended to include temporal Cls)



General capabilities

v Spatial averaging modes for analysis metric can be computed on a pixel-by-pixel basis or at basin averaged basis

¢ Pixel-by-pixel - each pixel in datastream 1 is compared to a pixel in datastream 2

& Basin-averaged - datastream 1 and 2 values are averaged to the basin scale and then compared using the analysis metric
v Computes derived variables

¢ e.g. Bowen ratio can be computed through LVT (and used for analysis) if both Qle and Qh are present, A column
averaged, weighted root zone soil moisture if individual soil moisture layer values are present

¢ Energy/Water/Evaporation balance values

v Analysis metric computations are performed

Variance of
normalized
Innovations

¢ Across the entire analysis period
¢ At specified temporal intervals

& Average seasonal/diurnal cycles (if specified by the user)

v Supports outputs from all LIS computational subsystems

¢ Data assimilation diagnostics from the LIS-DA output



Software architecture

LVT Core ¢ 3-layer architecture

Time Logging and /O . . Geospatial
Management Diagnostic Management Configuration Transformation

¢ Specified as an object oriented
framework with plugins defined
:Or

Core Structure and
Features

—_— |

Training

Analysis Metrics Datastreams

Algorithms

Abstractions

¢ Analysis metrics

[ f LIS output '
Accuracy measures (RMSE, Bias, Correlation) FLUXNCI)EL'JI'F:IlfjxeS @ DataStreamS

Ensemble measures (Likelihood) leiaianieeoessal
S elE L ARM fluxes, soil moisture, temperature Two-variable regression
Uncertainty measures (Importance)

_ SNOTEL snow water equivalent ANNs
Information theory measures (Entropy, AMSR-E soil moisture

complexity) , . .
Scale decomposition (Wavelet analysis) MOIDIE e oVl !‘ Tl’al ﬂ | ﬂ g al g O r | t h m S

NLDAS model outputs

USGS streamflow
SURFRAD radiation

S prespiEon anase & Analysis instances are enabled
by a config file (no externa
scripting required)

Use Caselmplementations




Supported data streams

Satellite/Remote Sensing
g ALEX]
g AMSR-E SWE/snowdepth
g LPRM AMSR-E soll

moisture

g ESA CCI soil moisture
g GIMMS NDVI
g GlobSnow SWE
g GRACE TWS
g ISCCP LST
g MOD10A1 snow cover
g MOD16A2 ET
g MODIS LST
g SMOPS soil moisture
g SMOS L1 Tb
g SMOS L2 soil moisture
g UWET
o ...




Supported analysis metrics

Metric class Examples

: : Mean, Standard deviation, Anomaly, Tendency, Min, Max,
D|agnost|cs : Sum, Maxtime, Mintime

~ ACC, Bias, CSI, ETS, FAR, FBIAS, MAE, NSE, PODY,
Accuracy PODN, POFD, Correlation, Anomaly Correlation, Tendency
? Correlation, unbiased RMSE

.................................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................

Metric entropy, Information gain, Effective complexity,
Fluctuation complexity

.................................................................................................................................................................................................................................................................................................................................

Spatial similarity Hausdorff norm




. . Root zone soil moisture based drought
Exa | I p ‘ eS Of | n d |CatO rS percentiles generated by LVT from a LIS U.S. Drought Monitor estimate

simulation
50°N . —

45°N —

40°N —

July 30, 2002

35°N

30°N

o ¢ _
25°N | = | 7

50°N

¢ A suite of common,
normalized indicators has “*
been developea

Jan 3, 2006

30°N —

25°N

(S

0°N

¥ SPI, SRI, SSWI, SSGI, -
percentiles
& These indicators are Seprer 2T

computed as deviations

from long term (fitted/ .
: : : DO - Abnormally Dry | - D2 Drought - Severe - D4 Drought - Exceptional
ComDUted) d |Str| bUtIOnS D1 Drought - Moderate - D3 Drought - Extreme




Examples of ensemble analysis

Geospatial

Management Diagnostic || Management

0.5 p 1 ' '
Ensemble MS%I; """ o 1.5 | 6, porosity | | -
R I saturateg flnehtrlc ,otent(glal o
0al | K, = saturated hydraulic conductivity
, b - pore size distribution index
Ol _
03 + (B)

0.5 | -

Soil Moisture (m3/m3)
Uncertainty Importance (-)

O l 1 1 I \ | l ]
2010/05 2010/06 2010/07 2010/08 2010/C 2010/05 2010/06 2010/07 2010/08 2010/(

Uncertainty importance: An assessment of the relative contribution of each parameter to the
ensemble spread (cross correlation between the simulated variable and the parameter, across the
ensemble)

¢ (Can be used to guide parameter optimization/uncertainty estimation studies



Scale decomposition features

0 ) W Py oy Probability of detection of snow cover (1 km)

P YT
. DA

38N

How much of this improvement will be obtained at coarser
spatial resolutions where the topography is not well resolved?

27N

26N

e e R
25N

34N .
I Discrete wavelet transform

33N

32N

35

21N

30 1

J0N

61E

20 r

15

10 |

5 | |

0 | | | | | Iu Iu "B I . _—
1 2 4 8 16 32 64

128 256 512 1024

Percentage contribution

Spatial Scale (KM)



Change in metric entropy through the
assimilation of AMSR-E soil moisture retrievals

Time series analysis designed to detect
patterns
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(Wolf 1999)
intuitive relationship between information and complexity

from Pachepsky et al. (2000)



Benchmarking

¢ LVT provides two capabillities related to benchmarking:

¢ Develop a benchmark dataset by training any two of the supported
datasets

¢ Compare the model runs to the benchmark dataset
¢ [raining algorithms available

¢ One-variable regression

¢ [wo-variable regression

¢ ANN (coming soon..)



Ongoing work

¢ Currently LVT works only in a serial mode. Multi-processor
capabilities are being added.

¢ Spectral/cross-spectral analysis (along Weedon et al., JHM 2015)

¢ Expand the suite of indicators (e.g. multi-variable based)



